CORROSION: Chloride Stress Corrosion Cracking Definition: The combination of tensile stress and a specific corrosive environment can crack stainless steels. This mode of attack is termed stress corrosion cracking (SCC). The most common environmental exposure condition responsible for SCC of stainless steels is the presence of chlorides. Although no stainless steel grade is totally immune to chloride SCC, the relative resistance of stainless steels varies substantially. Influence of Alloy Composition: The relative resistance to chloride SCC is dependant on the stainless steel family. The austenitic family of stainless steels is the most susceptible. The resistance of austenitic stainless steels to SCC is related to the nickel content of the steel. The most susceptible austenitic grades have nickel contents in the range of 8 to 10 wt%. Therefore, standard grades such as 304/304L and 316/316L are very susceptible to this mode of attack. Austenitic grades with relatively high nickel and molybdenum contents such as alloy 20, 904L, and the 6% molybdenum super austenitic grades have substantially better chloride SCC resistance. The ferritic family of stainless steels, which includes grades such as type 430 and 444 are very resistant to chloride SCC. The duplex stainless steel with their dual austenite/ferrite microstructures has a resistance that is in between that of the austenite and ferrite grades. Corrosion Testing The relative resistance of a stainless steel to chloride SCC is often quantified by the use of standard boiling salt solutions. The following table summarizes the results of testing in boiling salt solutions of 26% NaCl (sodium chloride), 33% LiCl (lithium chloride), and 42% MgCl2 (magnesium chloride). The boiling LiCl and MgCl2 test solutions are very aggressive relative to practical applications and only austenitic alloys with compositions that approach those of nickel-base alloys will routinely resist cracking in these test solutions. Table 1: Relative chloride SCC resistance measured using fully immersed U-bend specimens in standard boiling salt solutions. (Taken from producer data)
Crack Appearance The typical crack morphology for chloride stress corrosion cracking consists of branched transgranular cracks. Figure 1 shows the cracking that occurred on a 6Mo super austenitic stainless steel (N08367) exposed to 0.2% chlorides at 500 °F (260 °C) Figure 1: Typical appearance of chloride stress corrosion cracking Photo courtesy of TMR Stainless Environmental Factors: The environmental factors that increase the cracking susceptibility include higher temperatures, increased chloride content, lower pH, and higher levels of tensile stress. Temperature is an important variable. When stainless steels are fully immersed, it is rare to see chloride stress corrosion cracking at temperatures below 60 °C (150 °F). There is a synergistic relationship between dissolved oxygen and the chloride level. If the oxygen level is reduced to the 0.01 to 0.1 ppm range, aqueous solutions containing low to moderate chloride levels are not likely to crack austenitic alloys, such as 304L and 316L. The normal solubility of O2 in water at room to moderate temperatures (e.g. up to 140°F/60°C) is 4.5 to 8 ppm at atmospheric pressure. In actual service environments, evaporation can produce local build-up of aggressive corrosive substances, such as chlorides and the H+ ions, resulting in conditions that are substantially more aggressive. Under severe evaporative conditions, stainless steels can crack at temperatures well below the thresholds measured under conditions where there is full immersion. Because of this, one must use caution when specifying materials for applications that involve the evaporation of chloride-bearing solutions on hot stainless steel surfaces. The Materials Technology Institute (MTI) of the Chemical Process Industry has reviewed literature and collected case histories to define guidelines for the chloride SCC susceptibility of types 304L and 316L stainless steel in neutral water environments. Figure 2 shows the cracking threshold for 304L and 316L stainless steel as a function of temperature and chloride content. The level of chlorides required to produce cracking is relatively low. Failures have been reported in environments with as little as 10 ppm chlorides. This is particularly true for environments having concentrating (evaporating) mechanisms such as wet/dry interfaces or a film of solution in immediate contact with a heat-rejecting surface. In these situations, a few ppm of chlorides in the bulk solution can concentrate to hundreds of ppm in the area of evaporation. Figure 2: Cracking threshold for 304 and 316 alloys exposed to near neutral chloride-bearing waters The cracking threshold of a 6Mo super austenitic stainless steel (UNS N08367) immersed in oxygen-bearing neutral chloride solutions is shown in Figure 3. The temperature thresholds are well above the 212°F (100°C) range, indicating that exposures to atmospheric boiling in neutral chloride solutions are very unlikely to produce cracking. Figure 3: Cracking threshold for a 6Mo super austenitic steel ( UNS N08367) immersed in neutral NaCl solutions. Courtesy of TMR Stainless Swimming Pools As was noted above, it is rare to see chloride stress corrosion cracking at temperatures below 60 °C (150 °F). Elevated load bearing applications in interior swimming pools are an exception to this rule and have a unique set of conditions. For more information, please read, Successful Stainless Swimming Pool Design, Stainless steels for swimming pool building applications – selection, use and avoidance of stress corrosion cracking, and Stainless Steel in Swimming Pool Buildings. Additional References There are numerous NACE papers and stainless steel producer brochures on this topic. Additionally, the following industry association brochures are suggested as general references. Nickel Institute brochure No. 11 021 High Performance Stainless Steels Nickel Institute brochure 16001 Practical Guidelines for the Fabrication of High Performance Austenitic Stainless Steels International Molybdenum Association brochure Practical Guidelines for the Fabrication of Duplex Stainless Steelsh Source : SSINA per David A. Hartquist, counsel to SSINA. |
Chloride Stress Corrosion Cracking & Relative resistance of Various Stainless Steel Grades
Content and Ownership of Posted Content
Please read before posting a comment...
Each User owns and is responsible for the content that such User posts on our Great Plains Stainless Site, including information that such User publishes and makes available for other Users to view.
Representations and Warranties.
By posting content on our Site, you represent and warrant that:
- You are entitled to submit the content;
- The information is accurate;
- The information is not confidential;
- The posting of the information is not in violation of any applicable laws, contractual restrictions or other third party rights.
- It is solely your responsibility to ensure the accuracy of your profile and submitted content and to update that information as appropriate.
License and Use of Content.
In order for you to share your information with others, Great Plains needs your permission to reproduce your information on or through this Site. Therefore, under these Terms and Conditions, by submitting, posting or displaying any content to or on this Site, you agree to grant Great Plains a non-exclusive, worldwide, assignable, sub-licensable, and royalty-free right that permits us to copy, distribute, publish, remove, retain, and use your content or information without any further consent, notice or compensation for the sole purpose of enabling Great Plains to provide you with its Services.
Additionally, with the objective of reaching more people and facilitating connections, you hereby grant Great Plains the right to share published information from our Site with other sites with which we have partnerships. Information published on our Site may become public information at the time of its distribution on other sites, via email alerts, RSS feeds, search engines, and other social media tools.
Furthermore, by submitting or posting content on the Site, you agree to provide other users with a license to permit Users of the Site to download and share content from this Site, provided that they properly attribute the work to the author, do not alter it in any way, and do not copy or use the work for commercial purposes.
User-to-User Communication and Sharing. The Site includes various forums and blogs where you can post your observations and comments on designated topics. Great Plains cannot guarantee that other Users will not use the ideas and information that you share. Therefore, if you have an idea or information that you would like to keep confidential and/or do not want others to use, do not post it on the Site.
Great Plains is not responsible for a User's misuse or misappropriation of any content or information that you post in any forums, blogs, and other sections of the Site.